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agent, a strikingly different result is obtained. The iodolactones 
(Figure 3,R = CN) derived from the products of oxidation of 
3 in the presence of the dienophile still show a "triplet" reso­
nance for Hb. However, when the cyclobutadiene-/,2-^2 is 
generated from 4, the corresponding iodolactones show only 
a singlet resonance for //b-10a 

Three important conclusions follow.10b (1) Singlet cyclo­
butadiene cannot have a D^ equilibrium geometry in solution. 
If it did, the two sources of cyclobutadiene-1,2-dj would have 
given identical label distributions in the adducts with methyl 
(Z)-3-cyanoacrylate. (2) The AG* for interconversion of 
isomeric (presumably rectangular) cyclobutadienes is com­
parable with that for trapping. With 3.6 M methyl acrylate as 
trap, geometrical isomerism is faster than adduct formation, 
whereas with 2.8 M methyl (Z)-3-cyanoacrylate trapping 
appears to be the faster process. (3) The formation of cyclo­
butadiene-/, 2-di from 4 and the subsequent trapping with 
methyl (Z)-3-cyanoacrylate must both be concerted pericyclic 
processes since involvement of a biradical intermediate in either 
step would have resulted in formation of 5a and 5c in equal 
amounts." 

The mechanism in Figure 2 requires that the ratio of 5a:5c 
vary with the concentration of trapping reagent (T) according 
to the equation11,12 

[5a]/[5c]=l + (*2/*i)[T] 

Measurement of the 5a:5c ratio as a function of [T] should, 
therefore, provide a quantitative determination of &2 A i • In­
dependent measurement of ki for a variety of dienophiles 
would then yield several estimates of k \, the rate constant for 
geometrical isomerism of cyclobutadiene-/,2-di. This in turn 
could lead to evaluation of the activation parameters for the 
process, by studies at several different temperatures. Experi­
ments of this kind are in progress. 
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Total Synthesis of (±)-Dihydrospiniferin-l: A 
Furanosesquiterpene with a 1,6-Methano[10]annulene 
Carbon Skeleton 

Sir: 

Spiniferin-1, an unstable furanosesquiterpene from the 
Mediterranean sponge Pleraplysilla spinifera, was recently 
reformulated as I or, less likely, II through careful NMR 
spectral analysis.1,2 Accordingly, spiniferin-1 would appear 
to be the first known natural product incorporating the novel 
l,6-methano[10]annulene carbon framework.3 

Me Me Me Me 

I II 

Its unique carbon skeleton, its chemical instability, and the 
unresolved ambiguity between structures I and II2 stimulated 
our interest in developing a structurally definitive synthesis of 
spinferin-1. In this report we offer support for structure I 
through a rational total synthesis of the known2 dihydro de­
rivative 11 (Scheme I). 

Dienone 24 was prepared by an improved sequence through 
addition of methyllithium to 6-methoxy-l-tetralone (1), Birch 
reduction,5 and acid-catalyzed hydrolysis-elimination. Con­
jugate addition of lithium dimethylcuprate afforded the un­
saturated ketone 3. Attempted Simmons-Smith cyclopropa-
nation6 of enone 3 caused conjugation of the double bond. As 
expected,6 the related alcohol yielded to cyclopropanation, but 
even here the reaction proved capricious and numerous trials 
were needed to optimize conditions.7 Jones oxidation8 of the 
derived tricyclic alcohol led to the corresponding ketone 4: vmax 
1710, 1465 cm"1; 5 2.5 (s, H-I), 2.1 (m, H-3), 1.1, 1.0 (s, 
CH3's), 0.4 ppm(s, H-Il). 

Formylation9a of ketone 4 occurred as planned at the less 
hindered (C-3) a position915 to give the hydroxymethylene 
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Scheme I" 

8. Z-O, R-H 
9. Z-O, R-Me 

10. Z-CHOMe1R-Me 

" (a) MeLi, Et2O,THF; (b) Na, NH3, EtOH; (c) HCl, H2O, Et2O; (d) 
Me2CuLi, Et2O; (e) NaBH4, EtOH; (f) Zn(Cu), CH2I2, Et2O; (g) 
H2CrO4, H2SO4, Me2CO; (h) HCO2Et, NaOMe, C6H6; (i) DDQ, C6H6; 
C) HCl, H2O, EtOAc; (Ic) MeI, K2CO3, DMF; (1) Ph3P

+CH2OMe, Cl", 
KO-r-Am, CH3C6H5; (m) HCl, H2O, Et2O. 

ketone 5. Other, less sterically demanding enol and enolate 
reactions (various bases plus Me3SiCl;10 various bases plus 
PhSeCl11) led to mixtures of C-l-C-3 regioisomeric products. 
Ketone 5 was smoothly dehydrogenated at room temperature 
with 2,3-dichloro-5,6-dicyano-l,4-benzoquinone (DDQ)12 in 
benzene to give the acid labile enone 6: ^m3x 1695, 1680, 1600 
cm"1; 5 9.8 (s, CHO), 8.2 (s, H-I) , 2.7 (AB, H-4, 7 A B = 18 
Hz, Av = 13), 1.15 (s, CH3 's), 0.5 ppm (d, H-11, J = 4 Hz). 
Enone 6 rearranged with startling ease to enol 8 [fmax 1630, 
1600, 1515, 1365, 1280, 1195 cm"1; 5 9.4 (s, H-12), 6.0, 5.8 
(s, H-6, H-9), 3.05 (d, H-Hb , 7 = 1 0 Hz), 1.25, 1.1 ppm (s, 
CH3 's)] upon treatment with a trace of acid or elution though 
silica gel. This remarkably facile ring expansion13 was attended 
by dramatic changes in the NMR spectrum highlighted by the 
appearance of a distinctive doublet at 3.05 ppm attributable 
to the deshielded methano bridge endo proton (8, H-I lb, J = 
10 Hz)2 and the concomitant disappearance of the shielded 
cyclopropane protons of enone 6 (5 0.5 ppm).14 

Alkylation of the hydroxy aldehyde 8 with methyl iodide-
potassium carbonate in dimethylformamide yielded the enol 
ether 9: mp 127-129 0 C; i/max 1650, 1615, 1390, 1275, 1145 
cm-1 ; 5 10.3 (s, H-12), 6.3, 5.8 (s, H-6, H-9), 3.8 (s, CH3O), 
3.1 (d, H-Hb , 7 = 10 Hz), 1.25, 1.0 ppm (CH3 's)]. This 
structure was confirmed both by the 13C N M R spectrum 
(aldehyde CO doublet at 191 ppm) and by addition of 
methy!lithium to give the secondary alcohol 12 [CH3 doublet 

Me' 

MeO' 

MeO 

at 1.3 ppm (7 = 6 Hz), broad carbinyl H quartet at 5.0 ppm]. 
The isomeric enol ether 13 was evidently not present to an 
appreciable extent. 

Aldehyde 9 condensed readily with methoxymethylenetri-
phenylphosphorane in toluene15 to give the bis enol ether 10. 

Treatment with aqueous HCl in ethyl ether slowly gave rise 
to the furan 11: <5 7.2, 6.45 (d, H-12, H-13, J = 2 Hz), 6.2 (s, 
H-6, H-9), 3.1 (d, H-I lb, 7 = 10 Hz), 2.3 (m, H-I) , 1.3, 1.0 
ppm (s, CH3 's). The 1H and 13C NMR spectra of U were in 
complete agreement with those of dihydrospiniferin-1.2 
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Electron-Transfer Photooxygenation. 4. 
Photooxygenation of rrans-Stilbene Sensitized 
by Methylene Blue1 

Sir: 

Methylene Blue (MB) and other dyes are widely used as 
sensitizers of photooxygenations.2 Usually, excited singlet 
oxygen (1O2) is produced by energy transfer from triplet dye 
to oxygen and reacts with acceptor (A) to give the product 
(AO2). 

In 1969, Rio and Berthelot3 reported a very slow photoox­
ygenation of trans-st'ilbene (TS) sensitized by MB to give 2 
mol of benzaldehyde. These authors assumed that the reaction 
involved 1O2 . Other 1O 2 sensitizers, however, including Rose 
Bengal (RB), failed to sensitize the reaction.3 The alcohol used 
to dissolve the RB was thought to cause this inefficiency.3 

However, it is difficult to understand this explanation because 
the lifetime of 1O 2 is not shortened sufficiently in methanol to 
account for these results.4 

We have previously shown that the cyanoaromatic-sensi-
tized photooxidation of TS to benzaldehyde in MeCN occurs 
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